Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation.

نویسندگان

  • Michalis Barkoulas
  • Jeroen S van Zon
  • Josselin Milloz
  • Alexander van Oudenaarden
  • Marie-Anne Félix
چکیده

Biological systems may perform reproducibly to generate invariant outcomes, despite external or internal noise. One example is the C. elegans vulva, in which the final cell fate pattern is remarkably robust. Although this system has been extensively studied and the molecular network underlying cell fate specification is well understood, very little is known in quantitative terms. Here, through pathway dosage modulation and single molecule fluorescence in situ hybridization, we show that the system can tolerate a 4-fold variation in genetic dose of the upstream signaling molecule LIN-3/epidermal growth factor (EGF) without phenotypic change in cell fate pattern. Furthermore, through tissue-specific dosage perturbations of the EGF and Notch pathways, we determine the first-appearing patterning errors. Finally, by combining different doses of both pathways, we explore how quantitative pathway interactions influence system behavior. Our results highlight the feasibility and significance of launching experimental studies of robustness and quantitative network analysis in genetically tractable, multicellular eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sli-3 negatively regulates the LET-23/epidermal growth factor receptor-mediated vulval induction pathway in Caenorhabditis elegans.

The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for ...

متن کامل

lin-25, a gene required for vulval induction in Caenorhabditis elegans.

During vulval development in the Caenorhabditis elegans hermaphrodite, the fates of six vulval precursor cells (VPCs) are influenced by distinct cell signaling events. In one event, a somatic gonadal cell, the anchor cell, induces the three nearest VPCs to adopt vulval cell fates. In another event, lateral signaling between adjacent VPCs specifies one of two different vulval fates, 1 degrees an...

متن کامل

C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival.

During oocyte development in Caenorhabditis elegans, approximately half of all developing germ cells undergo apoptosis. While this process is evolutionarily conserved from worms to humans, the regulators of germ cell death are still largely unknown. In a genetic screen for novel genes involved in germline apoptosis in Caenorhabditis elegans, we identified and cloned gla-3. Loss of gla-3 functio...

متن کامل

The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction

Vulval induction in C. elegans is controlled by a highly conserved signaling pathway similar to the RTK-Ras-MAPK cascade in mammals. By screening for suppressors of the Multivulva phenotype caused by an activated let-60 ras allele, we isolated mutations in a gene, ksr-1, that acts as a positive modifier of vulval induction and is required for at least two other let-60 ras-mediated processes. Al...

متن کامل

The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development.

In C. elegans, the RAS/MAPK pathway is used in different tissues to regulate various cell fate decisions. Several positive and negative regulators tightly control the activity of the RAS/MAPK pathway at different steps. We demonstrate a link between a G-protein-coupled receptor signalling pathway and the RAS/MAPK cascade. SRA-13, a member of the SRA family of chemosensory receptors, negatively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2013